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Abstract
We show that the ground state of a Bose–Einstein condensate of atoms with
hyperfine spin f = 2 can be either spin aligned, condensed into pairs of atoms
coupled to F = 0 or condensed into triplets of atoms coupled to F = 0. The
complete phase diagram is constructed for f = 2 and the generic properties of
the phase diagram are obtained for f > 2.

PACS numbers: 03.75.Mn, 03.65.Fd

If atoms in a Bose–Einstein condensate (BEC) are trapped by optical means [1], their hyperfine
spins (or spins) are not frozen in one particular direction but are essentially free except for
their mutual interactions. As a result, the atoms do not behave as scalar particles but each of
the components of the spin is involved in the formation of the BEC. This raises interesting
questions concerning the structure of the condensate and how it depends on the spin exchange
interactions between the atoms.

Such questions were addressed in a series of theoretical papers by Ho and co-workers [2]
who obtained solutions based on a generating function method. In the case of spin-1 atoms
the problem of quantum spin mixing was analyzed by Law et al [3] who proposed an elegant
solution based on algebraic methods. It is the purpose of this paper to point out that a wide
class of many-body Hamiltonians appropriate for the problem of interacting bosons with spin
can be solved through algebraic techniques which have found fruitful applications in nuclear
physics [4] as well as in other fields of physics (see, e.g., [5]). The main result derived in this
paper is that an exact solution is available for spin values f = 1 and f = 2 (for any value of
the number of atoms N) which allows the analytic determination of the structure of the ground
state of the condensate. For spin values f > 2, solvable classes of Hamiltonians give insights
into the generic properties of the phase diagram.

We consider a one-component dilute gas of trapped bosonic atoms with arbitrary (integer)
hyperfine spin f . In second quantization, the Hamiltonian of this system has a one-body and
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a two-body piece that can be written as (we follow the notation of [3])

H ≡ H1 + H2 =
∑
m

∫
�̂†

m

(
− ∇2

2Ma
+ Vtrap

)
�̂md3x

+
∑
mi

�m1m2m3m4

∫
�̂†

m1
�̂†

m2
�̂m3�̂m4d

3x, (1)

where h̄ = 1,Ma is the mass of the atom, and �̂m and �̂
†
m are the atomic field annihilation and

creation operators associated with atoms in the hyperfine state |f m〉 with m = −f, . . . , +f ,
the possible values of all summation indices in (1). The trapping potential Vtrap is assumed to
be the same for all 2f + 1 components. The coefficient �m1m2m3m4 follow from the interaction
between atoms which is assumed to be of short-range, two-body character,

U(�xi, �xj ) = δ(�xi − �xj )
∑
FM

ν ′
F |f 2;FM〉〈f 2;FM|, (2)

where |f 2;FM〉 is the combined state of the atoms i and j with total spin F, and
ν ′

F ≡ 4πh̄2aF /Ma with aF being the s-wave scattering length in the F channel. The assumption
underpinning the form (2) is rotational invariance of the Hamiltonian in hyperfine-spin space.

We assume in this paper that the scattering lengths in the different F channels are
comparable and that, in the first approximation, the interaction strength between the bosons is
independent of F. In that case, the dominant part of the Hamiltonian (1) is of the form

Hs = H1 + λ′ ∑
m1m2

∫
�̂†

m1
�̂†

m2
�̂m1�̂m2d

3x, (3)

and is symmetric under any interchange of the spin-component indices. Under this assumption
the condensate wavefunctions for each spin component φm(�x) (m = −f, . . . , +f ) can be
approximated by a single wavefunction φ(�x) which satisfies the Gross–Pitaevskii equation
associated with the dominant Hamiltonian [3]. Furthermore, the atomic field creation and
annihilation operators at zero temperature can be approximated by

�̂†
m ≈ b†

mφ(�x), �̂m ≈ bmφ(�x), m = −f, . . . , +f, (4)

where bm and b
†
m are the annihilation and creation operators associated with the entire

condensate, satisfying the usual boson commutation rules[
bm, b

†
m′

] = δmm′ , [bm, bm′ ] = [
b†

m, b
†
m′

] = 0. (5)

In this approximation, the entire Hamiltonian (1) can be rewritten as

H ≈ Ĥ ≡ εb† · b̃ +
1

2

∑
F

νF [b† × b†](F ) · [b̃ × b̃](F ), (6)

where the coefficients ε and νF are related to those in the original Hamiltonian through
integration over x, namely νF = ν ′

F

∫ |φ(�x)|4 d3x. The notation × in equation (6) implies the
coupling to a given spin F and projection M,

[b† × b†](F )
M =

∑
mm′

〈f m f m′|FM〉b†
mb

†
m′ , (7)

where 〈· · · · | · ·〉 is a Clebsch–Gordan coefficient [6]. Furthermore, the dot · denotes a scalar
product,

T̂ F · T̂ F ≡ (−)F
√

2F + 1[T̂ F × T̂ F ](0)
0 , (8)
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for tensor operators T̂ F
M of rank F. The definition of the adjoint operator b̃m ≡ (−)f −mb−m

ensures that b̃m is an annihilation operator with transformation properties under rotations that
are the same as those for the creation operator b

†
m [7]. With the above definitions, we have

that b† · b̃ = ∑
m b

†
mbm is the number operator N̂ which counts the total number of atoms in

the condensate.
To derive the solvability properties of the Hamiltonian (6), we first determine its algebraic

structure by introducing the bilinear operators b
†
mbm′ . From equation (5) one finds the

commutation relations[
bm1b

†
m2

, bm3b
†
m4

] = bm1b
†
m4

δm2m3 − bm3b
†
m2

δm1m4 , (9)

which can be identified as those of the unitary (Lie) algebra U(2f + 1) [7]. Exactly solvable
Hamiltonians with rotational or SO(3) invariance are now found by the determination of all
Lie algebras G satisfying U(2f + 1) ⊃ G ⊃ SO(3). The canonical reduction of U(2f + 1)

is of the form

U(2f + 1) ⊃ SO(2f + 1) ⊃ SO(3). (10)

For f = 3 there is an additional exceptional G2 algebra between SO(2f +1) and SO(3) which
for the symmetric representations of U(2f + 1) considered here does not add anything to the
discussion. The relevance of a chain of nested algebras of the type (10) is that it defines a set
of commuting operators and with it a class of solvable Hamiltonians. Consider in particular
the Hamiltonian

Ĥ ′ = a1Ĉ1[U(2f + 1)] + a2Ĉ2[U(2f + 1)] + bĈ2[SO(2f + 1)] + cĈ2[SO(3)], (11)

where a1, a2, b and c are numerical coefficients and Ĉn[G] is the nth-order Casimir operator
of the algebra G which satisfies the property that it commutes with all generators of G [8].
Solvability of the Hamiltonian (11) follows from the fact that it is written as a sum of commuting
operators, a property which indeed is valid for the Casimir operators associated with any
chain of nested algebras such as (10). The Casimir operators appearing in equation (11)
are known in closed form,

Ĉ1[U(2f + 1)] = N̂,

Ĉ2[U(2f + 1)] = N̂(N̂ + 2f ),

Ĉ2[SO(2f + 1)] = −(2f + 1)T̂ 0
+ · T̂ 0

− + N̂(N̂ + 2f − 1),

Ĉ2[SO(3)] =
∑
F

[
1
2F(F + 1) − f (f + 1)

]
T̂ F

+ · T̂ F
− + f (f + 1)N̂,

(12)

in terms of the operators T̂ F
+,M ≡ [b† ×b†](F )

M and T̂ F
−,M ≡ [b̃× b̃](F )

M . Equations (12) show that
the solvable Hamiltonian (11) is a special case of the general Hamiltonian (6) with coefficients
ε and νF that are linear combinations of a1, a2, b and c according to

ε = a1 + (2f + 1)a2 + 2f b + f (f + 1)c,

νF = 2a2 + 2b + [F(F + 1) − 2f (f + 1)]c, F 
= 0,

ν0 = 2a2 − 4f b − 2f (f + 1)c.

(13)

The eigenvalues of the Hamiltonian (11) are

E′(N, v, F ) = a1N + a2N(N + 2f ) + bv(v + 2f − 1) + cF (F + 1). (14)

The allowed values of v are v = N,N − 2, . . . , 1 or 0, as can be obtained from the
U(2f + 1) ⊃ SO(2f + 1) branching rule [8]. The quantum number v corresponds to
the number of bosons not in pairs of bosons coupled to F = 0, and is known as seniority
[9, 10]. The allowed values of the total spin F are obtained from the SO(2f + 1) ⊃ SO(3)
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branching rule which is rather complicated but known in general [11]. The f = 2 example is
discussed below.

The generic solvability properties of the original Hamiltonian (6) now follow from a
simple counting argument. For atoms with spin f = 1 the solvable Hamiltonian (11) has three
coefficients a1, a2 and c (since SO(2f + 1) = SO(3)) while the general Hamiltonian (6) also
contains three coefficients ε, ν0 and ν2. (Note that the coupling of two spins to odd F is not
allowed in the approximation (4) of a common spatial wavefunction, so no ν1 term occurs.) For
atoms with spin f = 2 both the solvable and general Hamiltonian contain four coefficients
(a1, a2, b and c versus ε, ν0, ν2 and ν4) which can be put into one-to-one correspondence.
Hence, the general Hamiltonian (6) is solvable for f = 2. The same counting argument shows
that it is no longer solvable for f > 2.

The case of interacting f = 1 atoms was discussed by Law et al [3] who identified the
existence of two possible condensate ground states: one with all atoms aligned to maximum
spin F = N and a second with pairs of atoms coupled to F = 0. Whether the condensate
is aligned or paired depends on a single interaction parameter which in our notation is c.
With the technique explained above we can also derive the phase diagram for atoms with spin
f = 2. The results are exact and valid for arbitrary N. The entire spectrum is determined by
the eigenvalue expression (14) together with the necessary branching rules. In particular, the
allowed values of total spin F for a given seniority v are derived from the SO(5) ⊃ SO(3)

branching rule [4] given by F = 2τ, 2τ −2, 2τ −3, . . . , τ +1, τ with τ = v, v−3, v−6, . . .,
and τ � 0.

It is now possible to determine all possible ground-state configurations of the condensate.
This problem has been considered in the study of the spectral features of quantal systems with
random interactions [12]. We note that the character of the ground state does not depend on
the coefficients ai since the first two terms in the expression (14) give a constant contribution
to the energy of all states. Although this contribution is dominant according to our earlier
assumptions, the spectrum-generating perturbation of the Hamiltonian is confined to the last
two terms and depends solely on the coefficients b and c which are related to the original
interactions νF according to

b = 1
70 (−7ν0 + 10ν2 − 3ν4), c = 1

14 (−ν2 + ν4). (15)

The following exact finite-N results are found where the ground state of the condensate is
characterized by a seniority v0 and a total spin F0.

(i) N is even. We introduce N = 6k + 2δ with k integer and δ = −1, 0, +1. The possible
ground-state configurations have (v0, F0) = (0, 0), (N, 2N), (N, 2|δ|) or (N − 3 + δ, 0),
the latter existing only for δ = ±1,

(ii) N is odd. We introduce N = 6k + 3 + 2δ with k integer and δ = −1, 0, +1. The
possible ground-state configurations have (v0, F0) = (1, 2), (3, 0), (N, 2N), (N, 2|δ|) or
(N − 3 + δ, 0), the latter existing only for δ = ±1.

The phase diagram displays a richer structure than in the f = 1 case as is shown in figure 1.
We observe first of all the presence of the aligned phase where the seniority is maximal,
v0 = N , and all spins are aligned, F0 = 2N . Secondly, we have a low-seniority (paired) and
consequently low-spin phase. For even N this corresponds necessarily to (v0, F0) = (0, 0).
For odd N there must be at least one unpaired atom leading to the ground-state configuration
(v0, F0) = (1, 2); alternatively, however, it might consist of a triplet of atoms which is coupled
to total spin F0 = 0 leading to the ground-state configuration (v0, F0) = (3, 0). The (1, 2) and
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b

c

N even

(N,2N)

(0,0)
(N,2| |)

b

c

N odd

(N,2N)

(3,0)

(1,2)
(N,2 )| |

(a) (b)

Figure 1. Diagrams of the different phases of a Bose–Einstein condensate of atoms with spin
f = 2 characterized by a ground state (v0, F0), where v0 is the seniority of the ground state and
F0 is its total spin. The total number of atoms N is even in (a) and odd in (b). The grey area
corresponds to a ground state with (v0, F0) = (N − 3 + δ, 0) which only occurs for δ = ±1 and
disappears in the limit N → ∞.

(3, 0) phases are divided by the line b = 3c/7. The paired and aligned phases are separated
by the line

b = −2N(2N + 1)

N(N + 3)
c, b = − (2N − 2)(2N + 3)

(N − 1)(N + 4)
c, (16)

for N even or odd, respectively, which in both cases tends to b = −4c for N → ∞.
So far we have recovered the aligned and paired phases also encountered for interacting

f = 1 atoms (although the paired phase is somewhat more intricate for f = 2 due to the
possible presence of a triplet of atoms coupled to F = 0). For f = 2, a third phase occurs
for negative b and positive c characterized by high seniority (i.e. unpaired) and low total spin,
(v0, F0) = (N, 2|δ|). Finally, for δ = ±1 there exists a pathological region in the phase
diagram characterized by (v0, F0) = (N − 3 + δ, 0) (see figure 1). It is separated from the
high-seniority, low-spin region by the line

b = − |δ(δ + 3)|
4(2N + δ)

c, (17)

which tends to b = 0 for N → ∞. Hence this region disappears in the large-N limit.
We conclude that the ground state of a BEC consisting of atoms with spin f = 2 can be

of three different types: (i) a maximum-seniority spin-aligned, (ii) a low-seniority low-spin or
(iii) a maximum-seniority low-spin configuration. Note that ‘seniority’ in this context refers
to number of atoms that are not in pairs coupled to F = 0.

Since the Hamiltonian (11) is solvable for f = 2, all eigenstates, and in particular the
three different ground states, can be determined analytically. The general expressions given
by Chacón et al [13] reduce to

|v = N,F = M = 2N〉 ∝ (
d
†
+2

)N |0〉,
|v = 0, F = M = 0〉 ∝ (d† · d†)N/2|0〉,
|v = N,F = M = 0〉 ∝ ([a† × a†](2) · a†)N/3|0〉,

(18)

where the f = 2 atoms are denoted as d bosons. In the second of these expressions it is
assumed that N is even and in the third that N = 3k; other cases are obtained by adding a
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single boson or an F = 0 pair. a† are the so-called traceless boson operators [13] which are
defined as (see also chapter 8 of [14])

a†
m = d†

m − d† · d†

2N + 5
d̃m. (19)

We emphasize that (18) are the exact finite-N expressions for the eigenstates of the
Hamiltonian (11). Since in the large-N limit the traceless boson operators a

†
m become identical

to d
†
m, we arrive at a simple interpretation of the three types of configurations: (i) spin-aligned,

(ii) condensed into pairs of atoms coupled to F = 0 and (iii) condensed into triplets of atoms
coupled to F = 0.

How will these features evolve with increasing spin f of the atoms? For arbitrary
interaction strengths νF in the different F channels the Hamiltonian (6) is not solvable. By
imposing f − 2 conditions on νF it can be brought into the form (11) and this gives an idea
of the structure of the general phase diagram by constructing a two-dimensional slice of it.
For example, for atoms with spin f = 3 the elimination of a1, a2, b and c from equation (13)
yields the condition 11ν2 − 18ν4 + 7ν6 = 0. For f > 3 more conditions on νF are found. If
all conditions are satisfied, the phase diagram in b and c with

b = −7ν0 + 10ν2 − 3ν4

14(2f + 1)
, c = 1

14
(−ν2 + ν4) (20)

has properties similar to those in the f = 2 case. The analysis requires the knowledge of
the multiplicity d

(f )
v (F ), ( i.e., the number of spin-f atom states with seniority v coupled

to the total spin F) which can be derived from the SO(2f + 1) ⊃ SO(3) branching rule
[11]. We find that for sufficiently large even N there are four competing ground states with
(v0, F0) = (N, f N), (N, 0), (0, 0) and (2, 2), the latter of which disappears as a ground
state in the large-N limit. For sufficiently large odd N the four competing ground states have
(v0, F0) = (N, f N), (N, 0), (1, f ) and (3, f2 ≡ f mod 2), the latter two being separated by
the line b = [f (f + 1) − f2(f2 + 1)]c/(4f + 6). The results correspond to what is found in
the f = 2 case and lead to an essentially identical (b, c) phase diagram.

Finally, we point out that the appearance of exact seniority ground states requires weaker
conditions on νF than those that have been discussed so far. In fact, the spin-aligned
configuration (N, f N) is always an eigenstate of the general Hamiltonian (6) because the
F = f N state is unique. Furthermore, it can be shown [10] that seniority is a good quantum
number if the interaction strengths νF satisfy �f/3� conditions only (where �x� is the largest
integer smaller than or equal to x). For all cases of any conceivable interest for BECs, this
reduces to no condition on the strengths νF for f = 1, 2 or just a single one for f = 3, 4, 5.
So there is at most a single condition required for all eigenstates to carry exact seniority and
for the results of this paper to be valid. Nevertheless, the determination of the complete phase
diagram for f > 2 with unconstrained interaction strengths νF remains a problem worthy of
further investigation.
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